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Figure 1: Fabric SVBRDFs from our algorithm mapped onto a pillow: (a) yellow satin, (b) red satin with colorful needlework, (c) wallpaper, (d) velvet.

Abstract
We present a new technique for the visual modeling of spatially-
varying anisotropic re�ectance using data captured from a single
view. Re�ectance is represented using a microfacet-based BRDF
which tabulates the facets' normal distribution (NDF) as a function
of surface location. Data from a single view provides a 2D slice
of the 4D BRDF at each surface point from which we �t a partial
NDF. The �tted NDF is partial because the single view direction
coupled with the set of light directions covers only a portion of the
“half-angle” hemisphere. We complete the NDF at each point by
applying a novel variant of texture synthesis using similar, overlap-
ping partial NDFs from other points. Our similarity measure al-
lows azimuthal rotation of partial NDFs, under the assumption that
re�ectance is spatially redundant but the local frame may be arbi-
trarily oriented. Our system includes a simple acquisition device
that collects images over a 2D set of light directions by scanning a
linear array of LEDs over a �at sample. Results demonstrate that
our approach preserves spatial and directional BRDF details and
generates a visually compelling match to measured materials.

1 Introduction
The physical world contains many complex materials whose re-
�ectance properties must be modeled or captured to produce re-
alistic CG imagery. Spatial variation and anisotropy are crucial and
particularly challenging to reproduce. Such effects can be repre-
sented by the six-dimensional Spatially Varying Bidirectional Re-
�ectance Distribution Function (SVBRDF)r (x; i;o) [Nicodemus
et al. 1977], describing how light is re�ected at each surface point
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x as the radiance ratio measured when viewed from directiono and
lit from directioni. Current techniques have proven inadequate for
obtaining visually compelling SVBRDFs.

The traditional approach represents the BRDF at each surface
point using parametric models [Cook and Torrance 1981; Ward
1992; Lafortune et al. 1997; Rusinkiewicz 1998]. It is dif�cult to
create realistic appearance by building such modelsab initio. Sim-
ple models lack power to capture real-world materials. More com-
plicated, multi-lobe models represent any BRDF to arbitrary accu-
racy but their many parameters are too hard to specify and control.
This has led to extensive research work in BRDF measurement.

A number of systems measure 6D SVBRDFs directly from sur-
face samples [Dana et al. 1999; McAllister et al. 2002; Lawrence
et al. 2006]. However, densely scanning over light and view di-
rections necessitates lengthy capture on expensive devices. It also
requires precise calibration of multiple or moving cameras, adding
to the cost and fragility of these systems. As a result, few mate-
rials have been measured in this way and little SVBRDF data is
available. Another measurement approach �ts parametric BRDF
models at each point, given data from a sparse set of views [Lensch
et al. 2003a; Gardner et al. 2003]. This simpli�es the acquisition
process, but fails to capture detailed, anisotropic re�ectance. Sim-
ple parametric models do not capture details in the measured data,
while multi-lobe models over�t the sparse view data and generalize
poorly to uncaptured views.

We present a new technique for modeling SVBRDFs from im-
ages of a surface sample taken from a single view. Our approach
represents anisotropic specularity at each point with a general mi-
crofacet BRDF model [Ashikmin et al. 2000], and tabulates the mi-
crofacets' 2D normal distribution function (NDF). The result is a
spatially-varying NDF (SVNDF). Data from a single view deter-
mines the NDF over only a partial region of the hemisphere. We
generate the full NDF at each surface point by iteratively grow-
ing these partial NDFs using partial NDFs from other points. Each
iteration searches candidates that overlap the current point's par-
tial NDF and are similar within the overlapping region. Since this
procedure is similar to example-based texture synthesis [Efros and
Freeman 2001; Kwatra et al. 2003], we call our methodExample-
Based Microfacet Synthesis.

Our basic assumption is that for any surface point we can �nd
others having a similar but rotated microstructure (i.e., a different
local frame). A single view thus yields different slices of the BRDF
at points sharing similar re�ectance, equivalent to partial NDFs de-



�ned over different subregions of the hemisphere. By converting
slices of 4D BRDFs to 2D partial NDFs, we are able to detect which
surface points share rotated microstructure and merge them to com-
plete their NDFs. Although we do not produce the original sample's
SVBRDF exactly, we do capture its statistical variation and rich ap-
pearance, as shown in Figure 1.

Our method represents a new application of ideas from texture
synthesis to SVBRDF acquisition in order to exploit spatial redun-
dancy. It is also the �rst sparse-view (actually single-view) acquisi-
tion method that preserves spatial and angular details. The sparsity
of input data required by our method greatly simpli�es acquisition
and reduces processing costs. Results demonstrate good visual ac-
curacy using data acquired by a simple and inexpensive device.

2 Related Work
Anisotropic BRDF models were introduced by Kajiya[1985].
A number of empirical BRDF models have since been proposed,
including Gaussian [Ward 1992] and generalized Phong [Lafortune
et al. 1997; Ashikhmin and Shirley 2000]. While these models ap-
proximately capture anisotropic re�ectance, they ignore the under-
lying microstructure and can miss details in many real-world mate-
rials [Ngan et al. 2005].

Another strategy is to explicitly model geometric microstructure.
Physically-based anisotropic BRDF models have been developed
for specialized materials such as �nished wood [Marschner et al.
2005], hair [Marschner et al. 2003], and cloth [Yasuda et al. 1992;
Irawan and Marschner 2006], but it is dif�cult to extend these mod-
els to other materials.

Models can also be developed to represent more general mi-
crostructure. Early work by Poulin et al.[1990] used a set of small
cylinders. Westin et al.[1992] computed a BRDF by simulating
the optical scattering of speci�ed micro-geometry. Ashikhmin et
al.[2000] proposed a model based on an NDF for surface micro-
facets. Recently Ngan et al.[2005] showed that this microfacet-
based model captures real-world anisotropic materials better than
traditional parametric models. They developed a method to �t the
NDF from captured 4D BRDF data.

We also model anisotropic BRDFs using tabulated normal distri-
bution functions as in [Ashikmin et al. 2000; Ngan et al. 2005]. But
we deal with the challenge of inferringspatially varyingBRDFs
from sparse measured data.

Dense view acquisition using a spatial goniore�ectometer was
proposed by Dana et al.[1999] to directly measure SVBRDFs
and bi-directional texture functions (BTFs) of real world sur-
faces. Different systems have since been developed to capture
SVBRDFs [McAllister et al. 2002; Gu et al. 2006], BTFs [Dana
2001; Muller et al. 2005], and re�ectance �elds [Garg et al. 2006].
These methods all require a dense sampling of view and light direc-
tions over the hemisphere. This is achieved by moving any two of
the three components (camera, object, and light source) or by using
a dome containing multiple light sources and cameras. Although
several techniques have been proposed to simplify the capturing
work with special devices [Dana 2001; Han and Perlin 2003], or by
exploiting intrinsic properties of re�ectance data [Garg et al. 2006;
Lensch et al. 2003b], acquisition still takes a long time or needs
an expensive hardware setup. Precise image registration is also re-
quired to detect surface correspondences, a dif�cult task that leads
to blurring if not done carefully [Weyrich et al. 2007].

Sparse view acquisition has been employed by several re-
searchers to solve the camera calibration problem and make BRDF
acquisition cheaper and easier. In [Gardner et al. 2003], the sur-
face is scanned with a linear light source and captured from a �xed
view. An isotropic Ward model is then �t to the captured data at
each point. Lensch et al.[2003a] reconstructed SVBRDFs of a real
object of known geometry. BRDFs are grouped into a small set

each �t using a Lafortune model basis, and re�ectance at every
point is represented as a linear combination over this basis. Gold-
man et al.[2005] use the same linear combination idea but with an
isotropic Ward model as the BRDF basis, to reconstruct both an
object's shape and its SVBRDF from sparse re�ectance data. Al-
though these methods preserve detailed spatial variation of surface
re�ectance, the simple parametric models on which they rely do not
accurately capture details or anisotropy of angular variation.

Debevec et al.[2000] apply a generalized microfacet model to
human skin. A face is acquired from a dense set of illumination
directions, at a single view from each side. Given speci�c assump-
tions about the skin's BRDF (i.e., the refraction index is known
and spatially constant, and the shadowing is based on the V-shaped
groove model) the face can then be rendered under new viewing
and lighting conditions. We capture surface re�ectance for arbi-
trary and unknown materials from a single view. We are also able
to reconstruct re�ectance for view/light directions whose half-angle
was not actually acquired. We do this by explicitly inferring partial
NDFs and completing them by merging from other surface points.

Recently, Zickler et al.[2005] presented a method to infer a
BRDF at one point by exploiting data from neighboring surface
points. Their method models the SVBRDF using six-dimensional
radial basis functions which �t sparse re�ectance data in each lo-
cal region. Angular resolution is enhanced at the cost of spatial
resolution. Moreover, they assume that re�ectance is isotropic in
direction and varies smoothly in space. Our representation makes
no assumptions about the material distribution over the surface – it
models the BRDF as a tabular microfacet normal distribution func-
tion that is spatially variant. By synthesizing the partial NDF �tted
at different surface points, our approach captures angular variation
without decreasing spatial resolution.

3 Microfacet-based SVBRDF Model

Figure 2: Symbols used in BRDF de�nition.

Microfacet theory represents surface microstructure with a large
number of tiny mirror facets, each purely re�ective and having
the same refraction index [Cook and Torrance 1981]. The BRDF
r (x; i;o) at a surface pointx can be decomposed into two parts:

r (x; i;o) = r d(x; i;o)+ ks(x) r s(x; i;o) (1)

where r s(x; i;o) is the specular part due to single-bounce re�ec-
tions,r d(x; i;o) is the diffuse part resulting from subsurface scatter-
ing and multiple-bounce re�ections, andks(x) controls the diffuse-
to-specular ratio. We model the diffuse part with the Lambertian
modelr d(x; i;o) = kd(x)=p.

Assuming the microfacets form a height �eld, the specular term
is given by [Cook and Torrance 1981]:

r s(x;o; i) =
D(x;h) G(x;o; i) F(x;o; i)

4(i � n) (o� n)
(2)

whereh = ( o+ i)=jo+ ij is the half-angle vector (shown in Fig-
ure 2), andn is the upward surface normal atx. Note that for a �at
sample,n = ( 0;0;1). The model consists of three spatially-varying



components: the Fresnel termF, the microfacet Normal Distribu-
tion Function (NDF)D, and the shadowing-masking termG.

The Fresnel termF(x;o; i) affects the specular shape near graz-
ing angles. Following [Cook and Torrance 1981], it is given by

F(x;o; i) =
(g� c)2

2(g+ c)2

 

1+
(c(g+ c) � 1)2

(c(g� c)+ 1)2

!

(3)

for unpolarized light. Hereg2 = h (x)2 + c2 � 1 andc = ji � hj. h (x)
denotes the relative refraction index at surface locationx.

The normal distribution function (NDF)D(x;h) describes the
distribution of microfacet orientations on the surface. It satis�es
D(x;h) � 0 and

R
W+

(n � h) D(x;h) dwh = 1 where the integration is
done in half-angle space over the hemisphere

W+ = W+ (n) =
n

h
�
�
� h � n > 0

o
:

High-frequency characteristics of surface re�ectance such as glossi-
ness and anisotropy are dominated byD(x;h), so we make no as-
sumptions about it and represent it in tabular form.

G(x;o; i) represents the shadowing and masking effects of micro-
facets on both incoming and outgoing light. It can be approximately
decomposed into the product of two directional shadowing termsS
as in [Beckmann 1965; Smith 1967; Ashikmin et al. 2000]:

G(x;o; i) = S(x; i) S(x;o): (4)

We follow the derivation in [Ashikmin et al. 2000] to compute
the shadowing termS(x;k) for a given directionk from the NDF
D(x;h) via

S(x;k) =
(k � n)

R
W+ (k)

T
W+ (n)(h � k) D(x;h) dwh

: (5)

The shadowing term is smooth [Ashikmin et al. 2000; Ngan et al.
2005], a fact we exploit in partial NDF recovery to constrain the
shadowing term (Section 5.1).

The full SVBRDF model is therefore

r (x;o; i) =
kd(x)

p
+ ks(x)

D(x;h) S(x; i) S(x;o) F(x;o; i)
4(i � n) (o� n)

(6)

and is represented by four quantities: an NDFD, a scalar Fresnel
refraction indexh , and scalar specular and diffuse coef�cients,kd
andks. Each is a function of surface locationx.

Given the SVBRDF, outgoing radianceL(x;o) at each pointx
can be computed by the rendering equation as

L(x;o) =
Z

W+

r (x; i;o) ( i � n) L(x; i) dwi (7)

whereL(x; i) is the incoming radiance from directioni.
Our implementation parameterizes direction space with a

hemicube, typically subdivided into 32� 32 cells on the top face
and 32� 16 cells on each side. For more specular materials such
as aluminum, we subdivide the hemicube more �nely. Here “direc-
tion space” refers to half-angle directionsh for the NDF, and light
directionsi for the 2D BRDF slice for a single view direction,o.

4 Re
ectance Data Acquisition
Data is acquired by illuminating the surface from different direc-
tions and capturing its re�ectance from one view. We adapt the de-
vice introduced in [Gardner et al. 2003]. As shown in Figure 3, the
setup includes a camera and a linear light source mounted above a
�at sample and controlled by a stepping motor. Typical dimensions
of a surface sample are 10cm� 10cm. We replace the linear light
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Figure 3: Our data acquisition device: (a) photograph, (b) diagram.

source used in [Gardner et al. 2003] with a linear array of 40 LEDs.
The distance between neighboring LEDs in the array is 0.6cm. A
Canon 30D camera with EF-100 2.8 lens is placed about 1.0m away
and 0.6m above the center of the surface sample, making an angle
of roughlyq=60� from vertical. Image resolution is 3504� 2336.

Before capturing, we calibrate the camera's position and orien-
tation with the method in [Zhang 2000]. A colored checker pattern
is used to calibrate the color and intensity of each LED. After geo-
metric and photometric calibration, we put the �at material sample
onto theXY plane, centered at the origin. Based on the size and
thickness of the material sample, we can adjust the heighth of the
LED array above the sample plane, but the typical value is 4cm.
The LED array is then placed at the starting positionp0, as far as
possible away from the sample, and translated over it. The step
length is equal to the LED separation size. For each LED position,
images of different exposures are taken to reconstruct an HDR im-
age as in [Debevec and Malik 1997]. The scan is �nished when the
LED array reachesp1, where it starts to occlude the sample from
the camera's view. The result is a sequence of imagesIq(x) where
the subscriptq2 f 1;2; : : : ;ng indicates a different point light source
(i.e. different LED with differentY translation). We manually mea-
surep0 andp1 so that the light source position can be recovered.

After capturing, the HDR images are reconstructed and recti�ed.
A BRDF sample at each surface pointx can then be computed from
the image sequenceIq, as

r
�
x; iq(x);o(x)

�
=

Iq(x)
(n � iq(x)) Lq jjPq � xjj2

(8)

wherePq is the position of the light source in imageq andLq is
its intensity. The lighting directioni is computed asiq(x) = ( Pq �
x)=jjPq � xjj . Since the camera is relatively far from the sample, we
use the viewing direction at the sample center for all surface points,
o = V=jjVjj , whereV is the calibrated camera position.

We then separate the diffuse from specular components using

r d(x) = min
q

�
r (x; iq(x);o) j Iq(x) > 0:05Iavg

	
(9)

wherer (x; iq(x);o) = Iq(x)=(Iq(x) �n). Intensity measurements be-
low �ve percent of averageIavg tend to be noisy and unreliable and
so are removed. This method is naive compared with existing ap-
proaches [Debevec et al. 2000; Gardner et al. 2003], but it pro-
duces reasonable results nonetheless. After separation we obtain
the scaled specular measurementr̃ s(x; iq(x);o) = r

�
x; iq(x);o

�
�

r d(x) = ks(x) r s
�
x; iq(x);o

�
at densely-sampled lighting direc-

tions. Finally, these scattered measurements are interpolated with
the push-pull method [Gortler et al. 1996], as in [Lawrence et al.
2006]. This yields a 2D slice of the specular componentr̃ s(x; i;o)
that is uniformly sampled over the hemicube of incident lighting
directionsi. The next phase uses̃r s to �t the NDF and the BRDF
model's other parameters.

It is possible that a single view can fail to provide enough exem-
plars for NDF synthesis, if there is insuf�cient spatial redundancy
or local frame variation over the material sample. An example is
brushed metal whose brush direction is constant over the entire
sample. Such cases can easily be addressed by capturing image
sequences for different rotations of the sample. BRDF slices from
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Figure 4: Domains for the partial NDF and its shadowing term. (a) The
partial NDF's domainWfor a given view direction,o, is shaded in blue. (b)
Computing the shadow termSfor a given light directioni needsD over the
domain shaded in yellow. Only part of it is covered in (a).

these different rotations can then be put together as if they were
captured from a larger sample in a single pass. None of our results
have required additional rotations.

5 Example-Based Microfacet Synthesis
With the captured 2D BRDF data at each surface point, the surface's
SVBRDF is modeled in three steps. We �rst construct the partial
NDF of the microfacets at each point. The NDF is partial because
the single view direction generates half-angle re�ected directions
covering only a portion of the hemisphere. Microfacet synthesis
then completes the partial NDF by “stitching” partial NDFs of sim-
ilar regions together. The shadowing and Fresnel terms are derived
from the completed NDF in the �nal step. Each step is detailed in
the following subsections.

5.1 Partial NDF Fitting
Given a 2D slice of specular BRDF data at each surface point, we
�t its NDF in this step. Each surface point's NDF is computed
independently. To avoid effects from the Fresnel term that will be
derived later, we exclude re�ectance data near the grazing angle
and assumeF(x; i;o) = 1. As shown in Figure 4a, with a �xed view
direction o and light directionsi over the whole hemisphere, the
sampled half-angle re�ectance directions cover only a sub-region
Wof the hemisphere:

W=
�

i + o
jj i + ojj

�
�
� i 2 W+

�
=

n
h

�
�
� re� (o;h) � n > 0

o
(10)

where re�(o;h) = 2(h � o)h � o re�ects the unit vectoro abouth.
So the captured data speci�es the NDF only partially, overW.

A straightforward solution for �tting this partial normal distri-
bution functionD(x;h)1 adapts the method in [Ngan et al. 2005].
Starting from constant shadow termS(x;k)=1, the partial NDF is
computed as:

D(x;h) =

8
<

:

4p r̃ s(x;o; i (h)) ( i (h) � n) (o� n)
S(x; i (h)) S(x;o)

; h 2 W

0; h 62W
(11)

wherei(h) = re� (o;h). The shadowing term is then derived from
the NDF using (5). This leads to a scheme that iteratively updates
�rst D and thenSuntil convergence. Although this method �ts the
captured data well, it is biased as illustrated in Figure 5b, and does
not accurately predict specular response at other views.

The problem arises because single-view data determines a par-
tial NDF over W (Figure 4a), while the shadowing term requires
the full NDF overW+ (Figure 4b). If we assume thatD = 0 out-
sideWand use it to estimate the shadowing term in (5), we end up
overestimatingS. After iterating, the NDF becomes biased.

To solve this problem, we constrainSto its minimum value over
all azimuthal angles viaS(x; i) = min i0f S(x; i0) j i0� n = i � ng. With

1Though the NDFD and its domainWare inferred in terms of half-angle
space,h, they determine a probability distribution over the hemisphere of
microfacet normal directions. Nevertheless, we will continue to denote the
function's argument ash.

Figure 5: Recovering the partial NDF from a single-view BRDF slice: (a)
ground truth, (b) reconstruction using [Ngan et al. 2005] (domainWis inside
the dashed blue curve), (c) reconstruction computed by our method, (d) con-
�dence functionW. The top row (a-c) shows the NDFD while the bottom
row (a-c) shows its shadowing termS (log of value). Both are visualized
using an orthographic projection.

this isotropically constrainedS, we iteratively update the NDF (11)
and its shadowing term (5) until convergence, as in the straightfor-
ward method. Figure 5c shows that the resulting partial NDF is
closer to the ground truth in Figure 5a. We have experimented with
other schemes to extend the domain ofD outsideWin order to de-
�ne S, including projection to low-order spherical harmonics and
push/pull. None has worked as well as this simple min-azimuthal
method. Note that the constrained shadowing term is only used to
�t the partial NDF; the �nal S is derived from the completed NDF
in the last step.

To represent the partial NDF's domainW, we de�ne a con�dence
function via

W(x;h) =
�
(re� (o;h) � n)

1
2
�
+ (12)

where[ � ]+ denotes maxf � ;0g. W is positive forh within W, grad-
ually decreases to 0 at its boundary, and remains 0 outside it. Low
con�dence is assigned near the boundary ofWwhere BRDF values
tend to be extrapolated and dominated by the Fresnel term. The
partial NDFD(x;h) and its con�dence functionW(x;h) are repre-
sented as a hemicube overh.

Note that it is possible to explicitly represent spatial variation in
the set of light directionsiq(x) and view directiono(x), by using
a spatially varying NDF domainW(x). This accounts for the �nite
lighting span and camera distance. Unfortunately, it also compli-
cates our synthesis algorithm and we leave the idea for future work.

5.2 NDF Completion using Synthesis
After recovering the partial NDFD(x;h) at each surface point, we
complete it using partial NDFs at other points. The key observation
is that on a sample surface, we can always �nd surface points having
similar NDFs but different local frames; i.e., differentazimuthal
rotations around the normal. So the captured data actually reveals
different parts of the common NDF at such points. As shown in
Figure 6, we exploit this idea by �nding rotated partial NDFs at
other surface points that are similar within their shared half-space
domain and merging them.

Figure 6: Merging partial NDFs from different points. (a) Partial NDFof
point x is similar to pointsa andb. (b) Da andDb are aligned toDx by
azimuthal rotation. Aligned NDFsD0

a andD0
b are merged to completeDx.



Given the partial NDF tupleY(x) = hD(x;h);W(x;h)i de�ned
on each surface point, the exemplar setY � is generated by rotating
Y(x) around the normaln by all possible azimuthal anglesj :

Y � = f Y(x; j )g = fhDj (x;h);Wj (x;h)ig

=
n

hD(x;R(j ) h) ;W(x;R(j ) h)i
�
�
� j 2 [0;2p]

o
(13)

whereR(j ) is an azimuthal rotation ofj .

NDFSynthesis(Y(x),Y � )
For each surface pointx

Y 0(x) = Y(x)
While (Wi (x) < W+ )

Y(x0; j 0) = BestMatch(Y i (x),Y � )
Y i+ 1(x) = Merge(Y i (x),Y(x0; j 0))

We complete each point's partial NDF with iterative synthesis
using the pseudo-code shown above. For each surface pointx, start-
ing from the initial NDF tupleY 0(x) = Y(x) = hD(x;h);W(x;h)i ,
we update the NDF and its con�dence function iteratively, yield-
ing Y i(x) = hDi(x;h);Wi(x;h)i at each iterationi. Each iteration
extends the NDF domain incrementally in counter-clockwise order
around the azimuth, as we will further explain in the next section.

The update searches the exemplar setY � to �nd a match of the
current NDF tupleY i(x), Y (x0; j 0), via

(x0; j 0) = argmin
x̃; ˜j

f dist(Y i(x);Y (x̃; ˜j ))g: (14)

Distance between two partial NDF tuplesY 1 = hD1;W1i and
Y 2 = hD2;W2i is de�ned using the integral

dist(Y 1;Y 2) =

Z

WT

p
W1(h)W2(h)










D1(h)
s1

�
D2(h)

s2










2

dwh
Z

WT

p
W1(h)W2(h) dwh

(15)

over their overlapping region

WT = f W1
\

W2g = f h j W1(h)W2(h) > 0g:

The scalarss1 and s2 normalize the partial NDFs over the over-
lapped region and are de�ned assk =

R
WT Dk(h) dwh for k=1,2.

To maintain synthesis quality, we exclude candidates from the
search setY � whose partial domains overlap insuf�ciently with
Y i(x). We also exclude candidates that insuf�ciently extendY i(x).
We adopt the simple rule that candidates must have 50� 85% over-
lap withY i(x).

After determining the best match, the new NDF tupleY i+ 1(x) is
updated by merging in the optimal extensionY(x0; j 0) via

Di+ 1(x;h) =
Wi(x;h) Di(x;h)+ s1

s2
Wj 0

(x0;h) Dj 0
(x0;h)

Wi(x;h)+ Wj 0(x0;h)
; (16)

Wi+ 1(x;h) = max
n

Wi(x;h); Wj 0
(x0;h)

o
: (17)

Continuing with the new partial NDF tuplesY i+ 1(x) at each sur-
face point, we repeat the above steps until each point's NDF cov-
ers the hemisphere. The NDF coverageWi(x) after each iteration
can be reconstructed fromWi(x;h) via Wi(x) = f h j Wi(x;h) > 0g.
There may be small uncovered regions left in some NDFs after syn-
thesis, which can be interpolated with the push-pull method. We
�nd that NDFs are suitably completed after �ve to seven iterations.

•

(a) (b) (c) (d)
1j

f
j n

Figure 7: Overlap region approximation in search pruning. (a) Current
Y i (x), formed by an earlier merge of two partial NDFs. (b) Overlap region
WT (enclosed by red line) ofY i (x) and a candidate (orange). (c) The overlap
region can be approximated by the intersection ofWwith a rotated version
of itself. (d) A range of rotations,j i , are uniformly sampled to get a discrete
set of overlap regions used for search pruning.

5.3 Synthesis Acceleration

A naive synthesis implementation is prohibitively slow due to the
expensive distance calculation in the candidate search and the large
number of surface points. Two ideas speed up synthesis.

Search Pruning We accelerate the search by pruning the set of
candidates. At �rst sight, the regionY i(x) is extended differently
at each point and each iteration, depending on which candidate is
selected for the merge. The overlap region therefore cannot be pre-
determined. However as shown in Figure 7b, as we extend the NDF
domain azimuthally, the overlap region is mostly determined by the
candidate we merged last and the current candidate. Therefore, the
overlap region can be represented as the intersection ofW with a
rotated version of itself,W(j ) = W

T
R(j )Was in Figure 7c.

Since the candidates have a 50-85% overlap withY i(x), j need
only be chosen in a limited range which we uniformly sample using
nf =20 angles. The result is a set of regionsf W(j i) j i = 1;2; : : : ;nf g
as shown in Figure 7d. Within eachW(j i), we compute the his-
togram ofD(x;h) at each surface pointx usingm= 32 buckets over
D's range [0,1]. We then use the resulting 32D vector as a search
key to �nd merge candidates that are similar within the region of
overlap. To accelerate this search, we precompute an ANN tree of
the histogram vectors before synthesis [Mount and Arya 1997]. A
separate tree is built for eachj i .

During synthesis, for eachj i , we compute the histogram of the
current regionY i(x) overW(j i). We use the corresponding ANN
tree to quickly �nd the �ve best matches in terms ofL2 distance in
histogram space. For each match, gradient descent obtains the opti-
mal j 0by minimizing (14) using the full-blown distance computa-
tion in (15). The minimal error match over allj is then selected to
merge. In the �nal iteration, we must consider overlaps between the
�rst as well as the last merged domain because azimuthal rotation
is periodic. We simply do the ANN search over both these domains
to form a larger candidate set before applying thej optimization.

NDF Clustering The second acceleration idea reduces both the
number of NDFs that must be synthesized as well as searched.
Since many surface points have similar re�ectance and can be
approximated well by a linear combination of a few representa-
tives [Matusik et al. 2003; Lawrence et al. 2006], we can perform
expensive NDF completion on a smaller set of representatives, and
obtain a high-resolution result by interpolating their completions.

To �nd the set of representatives, we applyk-means clustering
to the partial NDFs of all surface points. A representative in each
cluster is selected that is closest to the cluster center where distance
is computed according to (15). All examples in the paper set the
number of representatives to be 1% of the number of surface points.
A large number of clusters ensures each contains only samples that
are similar.

We then �nd interpolation weights on the partial data. Each
(non-representative) partial NDF,D(xi ;h), is approximated by lin-



ear interpolation on a set of neighbor representatives,D(x�
j ;h), via

D(xi ;h) = å
j2Ni

wi j D(x�
j ;h); (18)

where j 2 Ni indexes one of the neighbor representatives ofxi , and
wi j are the interpolation coef�cients. To determine the neighbor set
Ni for xi , we �rst collect its k=16 nearest representatives, exclud-
ing those whose distance is larger than 5l wherel is the smallest
distance between two representative NDFs. We then solve for the
weightswi j in the linear equation system represented by (18), aug-
mented by the single equationå j2Ni

wi j = 1. We setk=16 based on
the observation that the intrinsic dimension of the BRDF space is
roughly 16 [Matusik et al. 2003].

5.4 Estimating the Remaining Parameters
We compute the specular coef�cient given the completed NDFD
via ks(x) =

R
W+

(n � h) D(x;h) dwh. We then normalize the NDF by
D(x;h)=ks(x) and use it to compute the shadowing term from (5).

Finally, the relative refraction indexh (x) at each surface point is
estimated by minimizing

E(h (x)) =
Z

W+

jjFc(i;o;h (x)) � Fm(x; i;o)jj2dw (19)

whereFc(i;o;h (x)) is computed according to (3), andFm(x; i;o) is
computed from the measuredr s(x;o; i) as

Fm(x; i;o) =
4p r s(x;o; i) ( i � n) (o� n)

S(x; i) S(x;o) ks(x) D(x;h)
: (20)

We solve forh (x) with the Levenberg-Marquardt algorithm [Press
et al. 1992].

6 Experimental Results
We tested our method on publicly available, full 6D SVBRDF data
as well as 4D, �xed-view data slices captured with our simple de-
vice. Table 1 summarizes statistics for the latter, including spatial
resolution of acquired images, light resolution (product of the num-
ber of LEDs used in capture and the number of translation steps),
resolution of the top hemicube face of the resulting NDFs, and the
camera viewing angles. Viewing direction is measured in terms of
its elevation angle (angle with vertical axisZ) q and azimuthal an-
gle (angle inXY plane)j .

We implemented our microfacet synthesis algorithm on a PC
with Intel CoreTM2 Quad 2.13GHz CPU and 4GB memory. Cap-
turing takes about 1 hour using single-exposure acquisition (for
less specular materials like velvet) and 5-10 hours using multiple-
exposure acquisition (for highly specular materials like aluminum).
The angular sampling density for lighting is manually chosen: for
relatively diffuse materials, we can disable half the LEDs to speed
up the capturing process. Image data processing (including calibra-
tion, HDR reconstruction, diffuse separation, and resampling) takes
about 2-4 hours, and is dominated by disk I/O. Partial NDF recon-
struction takes about an hour, synthesis 2-3 hours, and estimation
of the remaining BRDF parameters 3-4 hours. Rendering results
shown in the paper use ray tracing. Only direct lighting effects are
included; inter-re�ection between surfaces is ignored.

6.1 Validation with Dense-View Data
We applied our synthesis algorithm on two SVBRDF datasets from
[Lawrence et al. 2006] and shared by the Princeton Graphics Group.
This data was captured by a spherical gantry whose movable cam-
era/lamp samples hundreds of lighting and tens of viewing direc-
tions. We applied our algorithm to a single view slice of the data,
reserving the remaining views as a validation reference. The com-
parison is shown in Figure 8. On the wallpaper example (a,b,c,d),

Sample Image Res. Light Res. NDF Res. View (q; j )

red satin 850� 850 20� 24 32� 32 (57:6� ;0:6� )
yellow satin 750� 750 20� 24 32� 32 (58:3� ; � 0:2� )
wallpaper 800� 800 20� 20 32� 32 (63:6� ; � 0:8� )
velvet 600� 500 20� 20 32� 32 (61:2� ;2:1� )
rose wood 600� 600 40� 65 32� 32 (53:3� ;4:6� )
oak wood 800� 800 40� 65 32� 32 (48:6� ; � 0:3� )
aluminium 250� 400 40� 65 128� 128 (40:8� ;4:9� )
copper 800� 800 40� 50 32� 32 (51:0� ;1:9� )

Table 1: Acquisition parameters for various samples.

the anisotropic re�ectance and the local frame variation over fan-
like regions is reproduced well by our technique. The greeting
card result (e,f,g,h) preserves the re�ectance properties (in this case,
isotropic) and their spatial variation.

6.2 Results with Single-View Data

We also experimented with data from our simple acquisition device.
The following results were all obtained from data captured on this
device and synthesized using our technique.

Figure 9 compares real images to rendered results from our
method, on three material samples. The reconstruction uses a differ-
ent view than the one captured. Although a good match is achieved,
subtle differences could be due to errors in photometric calibration
and white balance correction in the camera. A slight reduction in
sharpness on the aluminum highlights in (b) probably means that
our NDF hemicube resolution could be usefully increased. Results
for other material samples can be found in the accompanying video.

Figure 10 compares our synthesized microfacet model with a
�tted Ward model. Given data from our device, the Ward model
parameters are �t at each surface point using the Levenberg-
Marquardt algorithm [Press et al. 1992], as in [Goldman et al.
2005]. This process took about 6 hours for the anisotropic version
of the model and so is comparable to the processing cost of our syn-
thesis algorithm. Though the anisotropic Ward model matches bet-
ter than the isotropic one, neither captures the visual characteristics
of this red satin example as well as our technique. A comparison
of 6D SVBRDFs is dif�cult to convey in a single image; please see
the accompanying video for more extensive comparisons.

Figure 1 shows pillows decorated with four different materials
and rendered under an HDR lighting environment. Satin (a,b) ex-
hibits strong anisotropy due to the consistent �ber orientation. Fine
details in the needlework (b) are reproduced by our model. The
wallpaper example (c) shows local frame rotation of the plastic
coating microstructure. A result for velvet in shown in (d).

Figure 11ab shows dishes mapped with weathered copper and
brushed aluminum. Our model captures spatial variation to pro-

Figure 8: Validation comparison. The �rst row shows original measure-
ments from the database; the second shows our synthesis results. The left-
most two columns are from wallpaper data [a,c = view#1/light#125; b,d =
view#2/light#124]. The rightmost two columns are from greeting card data
[e,g = view#0/light#188; f,h = view#2/light#12]. View #3 (wallpaper) and
#0 (greeting card) were used as the input slice for our synthesis.



Figure 9: Comparison using single-view data from our simple device: (a)
yellow satin, (b) brushed aluminum, (c) oak. We compare two different
lighting directions (consecutive pairs of rows, directionis speci�ed below
the row pair), at a view (q=50.9� , j =-15.3� ) different from the one captured.
Rows (1) and (3) are images of the original sample; (2) and (4) are rendered
from our synthesized model.

vide a realistic weathered appearance in (a), which includes both
isotropic and anisotropic re�ectance. The brushed aluminum in (b)
is mapped onto the dish model using texture coordinates which sim-
ulate a circular brushing. Convincing, fan-shaped anisotropic high-
lights are generated.

Figure 11cd shows two kinds of wood mapped on a simple board
model. Our method visually captures the anisotropic re�ectance
of wood and preserves subtle differences in appearance between
the coarser oak strands vs. the much �ner rosewood �bers. Our
method models both surface and (thin layer) subsurface re�ections
[Marschner et al. 2005], without requiring their explicit separation.
The accompanying video shows more light/view con�gurations.

7 Conclusion
Our microfacet synthesis technique generates anisotropic, spatially
varying surface re�ectance consistent with the appearance of real

Figure 10: Comparison with parametric models: (a) real measured appear-
ance, (b) our result, (c) isotropic Ward, (d) anisotropic Ward. The viewing
direction reconstructed here is (q=50.9� ,j =-15.3� ).

samples. We have demonstrated successful results for a variety of
materials from data captured from a single view. Our method avoids
image registration and greatly simpli�es data acquisition and pro-
cessing. We hope this leads to a proliferation of measured SVBRDF
data for many materials and applications.

Our approach is also subject to a number of limitations. Since
the NDF at each point is synthesized from partial NDFs at other
points rather than from 4D BRDF data, the resulting BRDF is not
captured exactly. Our micro-facet model assumes only direct re-
�ection, and so does not capture unusual phenomena dominated by
multiple light bounces, such as retro-re�ection. The intent of our
method is to visually convey anisotropic re�ectance of common
materials from a small amount of easily captured data. Acquisi-
tion from a single view assumes enough sample points with shared
but rotated re�ectance. As we state in Section 4, more re�ectance
data can be obtained simply by rotating the sample.

In future work, we are interested in further optimizing the perfor-
mance of the data capture, synthesis, and parameter estimation al-
gorithms. Acquisition and processing might be sped up by exploit-
ing sparsity still further, by capturing smaller domains over light
direction and completing them by synthesis. We would also like
to handle samples that are not �at. Both these ideas would require
extending our synthesis algorithm to account for spatial variation in
the NDF domainW(x). Backtracking during the NDF merging and
capturing multiple views with (perhaps limited) surface correspon-
dence information might improve synthesis accuracy. Generalizing
the microfacet model to capture translucent objects and multiple-
bounce effects is another extension. Finally, we want to explore
ways to accelerate rendering of our SVBRDF model.
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and P. Dutŕe, Eds., 253–264.


